
Prepared By Prof. Hui Jiang (COSC3221) 3/27/2007

Dept. of CS, York Univ. 1

CSE 3221 Operating System Fundamentals
Prof. Hui Jiang

Department of Computer Science and Engineering

York University

No.11 File System File System Overview
User Application

File system Interface

File system Implementation
(algorithm & data structure)

Storage Structure
(devices)

File System

File-System Structure
File-System

Interface

File-system
Implementation

Device
I/O

Read 1st byte of /home/tom/work/test.txt

Read 1st block of file 296549625

Read:
drive 1, cylinder 73, track 2, sector 10

Out 0x113b, EF0C
Waiting for interrupt

File-System Interface
•• FileFile: logical storage unit defined by OS

– A file is a named collection of related information recorded on
secondary storage, e.g., disk.

– Files are mapped onto physical devices by the opera ting
system.

• File attributes:
– name, identifier, type, location,
– size, protection, time, date and owner.

• File operations:
– Creating a file
– Writing a file
– Reading a file
– Reposition within a file
– Deleting a file
– Truncating a file

Prepared By Prof. Hui Jiang (COSC3221) 3/27/2007

Dept. of CS, York Univ. 2

File-System Interface (cont’)
• File types

– executable, object, source, batch

– text, archive, library, multimedia

• File structure

• Directory: tree-structured, acyclic-graph, general graph

– search for a file

– list a directory

– Rename a file

– traverse the file system

• File sharing and protection

– Consistency semantics

– Access type: read,write,execute,append,delete,list

– Access control: owner,group,universe

File-System Implementation
• A logical view of disk space is a linear array of l ogical blocks.

• OS maintains lots of data structure to implement a file-system

– On-disk structures:

• How to boot OS saved in the disk

• Total number of blocks

• Number and locations of all free blocks

• Directory structure

• Individual file information: FCB(file control block)

– In-memory structures

• On-line file-system management

• CachingOn-disk Structure
• Boot Control Block (boot block)

– Contains information to boot an operating system

• Partition Control Block (superblock)

– Detailed information of this partition

• Directory structure: to organize files.

• A FCB (File Control Block) for each file (inode):

In-memory Structure
• An in-memory partition table for all mounted partition

• An in-memory directory structure for directory information of
recently accessed directories (caching)

• The system-wide open-file table contains a copy of the FCB’s
of all open files as well as other information.

• The per-process open-file table contains all open files for each
process (pointers to the appropriate entry in the system-wide
open-file table)

Prepared By Prof. Hui Jiang (COSC3221) 3/27/2007

Dept. of CS, York Univ. 3

File-System Implementation
• Directory implementation

• Allocation methods

• Free-space management

Directory Implementation
• A directory contains many files and possible sub-di rectories

• A directory structure need to store all index infor mation about all
files in this directory.

• Directory operations:

– Search/Locate a file in a directory

– Create a new file in a directory

– Delete a file from the directory

• Directory implementation:

– Linear list

– Hash tableLinear List
• Use a linear list of file names with pointers to da ta blocks

• Data structures: linear array OR linked list

– Search/locate a file: linear search of the whole li st

– Create a new file: linear search + adding a new ent ry

– Remove a file: linear search + deleting the entry

• Disadvantage: low efficiency due to linear search

• Ordered list: complicating file creation/deletion

File Name 1

File Name 2

File Name 3

Hash Table
Hush

Function
File

Name

File A File B

File A

Hash table

0

1

2

N-1

N-2

An example of hash function:
(add all characters in file-name) % N

Prepared By Prof. Hui Jiang (COSC3221) 3/27/2007

Dept. of CS, York Univ. 4

Allocation Methods
• Concerns:

– Use disk space effectively

– Access each file efficiently

• A logical view of disk space is a linear array of l ogic blocks

• Allocation methods:

– Contiguous allocation

– Linked allocation

– Indexed allocation

Contiguous Allocation(1)
• Contiguous-allocation method requires each file to occupy a set of

contiguous blocks on the disk.

• The directory entry for each file indicates the di sk address of the
starting block and the length (in block units).

Contiguous Allocation (2)
• Advantages:

– Disk access in accessing a file is minimal.

– Both sequential and direct accesses can be done eff iciently.

• Disadvantages:

– first-fit, best-fit (external fragmentation)

– Need to determine file size when creating it

• Modified contiguous-allocation scheme

– When the space is not enough, another chunk of cont iguous
space, called an extent, is added to the initial al location.

– Location of a file includes:

starting address + block count + link to next exten t

Linked Allocation(1)
• Linked Allocation: each file is a linked list of di sk blocks

– Each directory entry has a pointer to the first blo ck of the file

– Each data block has a pointer to next block

Prepared By Prof. Hui Jiang (COSC3221) 3/27/2007

Dept. of CS, York Univ. 5

Linked Allocation (2)
• Advantage:

– No external fragmentation

– A file can grow without limit (unless disk is full)

• Disadvantages:

– In sequential access, a disk seek is needed for rea ding next
block. (head movement can be long)

– In direct access, extremely inefficient.

– Wasting space for pointers, e.g. 4 out of 512-byte (0.78%)

• Clustering

– Reliability: a middle block is lost or damaged � all following
blocks can not be located

• Doubly linked list

• Save filename and relative block number in each blo ck

File-Allocation Table
• The table has one entry for each disk block

• Indexed by block number

Indexed Allocation(1)
• Indexed allocation: bringing all the pointers toget her into one

location — an index blockindex block.

• Each file has its own index block, which is an arra y of disk-block
addresses containing file data.

Indexed Allocation(2)
• Support efficient direct file access

• No external fragmentation

• Need cache index block for better performance

• Huge space waste:

– One file has a index block

– Most files on disk are only one or two blocks

• How large the index block should be??

– Small � less waste

– small � how to support a large file

EXAMPLE:
A 512-byte block, each pointer is 4-byte,

one index block can contain at most 128 pointers (512/4=128)

Largest file to be supported by one index block is 512-byte * 128 = 64 KB

Prepared By Prof. Hui Jiang (COSC3221) 3/27/2007

Dept. of CS, York Univ. 6

Indexed Allocation: Linked Scheme
• For large file, we can allocate several index block s, which are

also linked as a linked list

• In each index block:

– A reserved pointer to next index block (nil for small files)

– Other pointers for file data blocks

1st
Index
block

data
blocks

2nd
Index
block

data
blocks

Indexed Allocation: multilevel index
• A first-level index point to a set of second-level index blocks,

which in turn point to the file data blocks.M
outer-index

index table file

Previous EXAMPLE: 2-level index can support a file up to 8 MBSummary: Allocation Methods
• Contiguous allocation

– Quick access: only one disk read to reach data bloc k

– Prior size declaration

– Serious external fragmentation

• Linked Allocation

– n disk reads to reach n-th data block

– Not proper for random access

• Indexed allocation

– Two disk reads to reach data block

– Multi-level indexing requires more disk reads

– Large space waste due to index block

– Need cache index block (require large memory space)

Free-Space Management
• File-system maintains a free-space list

– Records all free disk blocks

• Two data-structures for free-space list

– Bit vector

– Linked list

– Grouping

– Counting

Prepared By Prof. Hui Jiang (COSC3221) 3/27/2007

Dept. of CS, York Univ. 7

Free-space management: Bit Vector
• Bit vector (Bit map) (n blocks)

• Bit vector is stored word by word on disk

First free block number calculation:

(number of bits per word)*(number of 0-value words starting from
beginning) + offset of first 1 bit

…

0 1 2 n-1

bit[i] =
1 ⇒ block[i] free

0 ⇒ block[i] occupied� Bit map requires extra space. Example:
block size = 2 12 bytes
disk size = 10*2 30 bytes (10 gigabyte)
n = 10*230/212 = 10*218 bits (or 320K bytes)

Free-space management: linked list
• Link together all free blocks

• Keeping a pointer to the
first free block (cached in
memory)

• No need of extra storage.

• Cannot get contiguous
space easily since
traversing the list is not
efficient.

