Prepared By Prof. Hui Jiang (COSC3221)

CSE 3221

No.11

Operating System Fundamentals

File System

Prof. Hui Jiang
Department of Computer Science and Engineering
York University

File-System Structure

application programs

File-System &

Interface logical file system

______ |y

File-system file-organization module

Implementation i

basic file system

Device -ﬂ

110 1/0 control

______ I T

l Read 1% byte of /home/tom/work/test.txt

i

| [Read 1¢ block of file 296549625

Read:

drive 1, cylinder 73, track 2, sector 10

-l

Out 0x113b, EFOC
Waiting for interrupt

devices

Dept. of CS, York Univ.

File System Overview

User Application

File System
File system Interface

x

1
! |
| 1
| 1
|]
I 1
1 1
| 1

1
1 . .
| File system Implementation :
' I
| 1
| [}
| 1
|]
1 1
1 1
| 1

(algorithm & data structure)

x

Storage Structure
(devices)

File-System Interface

« File: logical storage unit defined by OS

— Afile is a named collection of related information recorded on
secondary storage, e.g., disk.

— Files are mapped onto physical devices by the opera ting
system.

« File attributes:

— name, identifier, type, location,

— size, protection, time, date and owner.
« File operations:

— Creating a file

— Writing a file

— Reading a file

— Reposition within a file

— Deleting a file
Truncating a file

3/27/2007

Prepared By Prof. Hui Jiang (COSC3221)

File-System Interface (cont’)

« File types
— executable, object, source, batch
— text, archive, library, multimedia
« File structure
« Directory: tree-structured, acyclic-graph, general graph
— search for a file
— list a directory
— Rename a file
— traverse the file system
« File sharing and protection
— Consistency semantics
— Access type: read,write,execute,append,delete,list
— Access control: owner,group,universe

On-disk Structure

« Boot Control Block (boot block)
— Contains information to boot an operating system
« Partition Control Block (superblock)
— Detailed information of this partition
« Directory structure: to organize files.
* A FCB (File Control Block) for each file (inode):

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks

Dept. of CS, York Univ.

File-System Implementation
« Alogical view of disk space is a linear array of | ogical blocks.

« OS maintains lots of data structure to implement a file-system
— On-disk structures:
« How to boot OS saved in the disk
« Total number of blocks
* Number and locations of all free blocks
« Directory structure
« Individual file information: FCB(file control block)
— In-memory structures
¢ On-line file-system management
« Caching

In-memory Structure

* An in-memory partition table for all mounted partition

« An in-memory directory structure for directory information of
recently accessed directories (caching)

« The system-wide open-file table contains a copy of the FCB'’s
of all open files as well as other information.

process (pointers to the appropriate entry in the system-wide
open-file table)

« The per-process open-file table contains all open files for each

3/27/2007

Prepared By Prof. Hui Jiang (COSC3221) 3/27/2007

File-System Implementation

Directory Implementation

. . . « Adirectory contains many files and possible sub-di rectories
. Dlrectory |mplementat|on

A directory structure need to store all index infor mation about all
files in this directory.

« Directory operations:
— Search/Locate a file in a directory
¢ Allocation methods — Create a new file in a directory
— Delete a file from the directory
Directory implementation:
— Linear list
— Hash table

* Free-space management

Linear List

Hash Table
* Use a linear list of file names with pointers to da ta blocks
Hash table
File Name 1 — =
0 —F,m‘j_
File Name 2 —_— 1 — -
File Name 3 —— — -
—_— 2
. — [Fies |
File
Name =

« Data structures: linear array OR linked list

— Search/locate a file: linear search of the whole li st
— Create a new file: linear search + adding a new ent ry
— Remove a file: linear search + deleting the entry
« Disadvantage: low efficiency due to linear search An example of hash function:
« Ordered list: complicating file creation/deletion

(add all characters in file-name) % N

N-2|
N-1

Dept. of CS, York Univ.

Prepared By Prof. Hui Jiang (COSC3221)

Allocation Methods

« Concerns:

— Use disk space effectively

— Access each file efficiently
« Alogical view of disk space is a linear array of | ogic blocks
« Allocation methods:

— Contiguous allocation

— Linked allocation

— Indexed allocation

Contiguous Allocation (2)

« Advantages:

— Disk access in accessing a file is minimal.

— Both sequential and direct accesses can be done eff iciently.
« Disadvantages:

— first-fit, best-fit (external fragmentation)

— Need to determine file size when creating it
« Modified contiguous-allocation scheme

— When the space is not enough, another chunk of cont iguous
space, called an extent, is added to the initial al location.

— Location of a file includes:
starting address + block count + link to next exten t

Dept. of CS, York Univ.

/P
Contiguous Allocation(1)
« Contiguous-allocation method requires each file to occupy a set of

contiguous blocks on the disk.

« The directory entry for each file indicates the di sk address of the
starting block and the length (in block units).

TNt file stagt Ienzgth
o1 1 21 s O
f .

mail 19 6
4 s e 7] list 28 4
f 6 2
s[] e[J1o[]11[]
tr
1213140151
16[] 171 18] 19
mail
20212223
24[]2s[]26[]27[]
list
28[]20[]30[]31[]

w
LI S it =i 1 b i T [1CHE
I

Linked Allocation(1)

« Linked Allocation: each file is a linked list of di sk blocks
— Each directory entry has a pointer to the first blo ck of the file
— Each data block has a pointer to next block

file start end

o] 2] s = 5 =2

1213114 1151
1eGI17[J18[119[]

20[] 21 2|:| 23[]
24[] 254261271
28] 29[]30[131[]

TS i Il e P T T LB U T i

3/27/2007

Prepared By Prof. Hui Jiang (COSC3221)

Linked Allocation (2)

« Advantage:

— No external fragmentation

— Afile can grow without limit (unless disk is full)
« Disadvantages:

— In sequential access, a disk seek is needed for rea ding next
block. (head movement can be long)

— In direct access, extremely inefficient.
— Wasting space for pointers, e.g. 4 out of 512-byte (0.78%)
« Clustering

— Reliability: a middle block is lost or damaged - all following
blocks can not be located

« Doubly linked list
« Save filename and relative block number in each blo ck

Indexed Allocation(1)

« Indexed allocation: bringing all the pointers toget her into one
location — an index block.
« Each file has its own index block, which is an arra y of disk-block
addresses containing file data.
r

directory

index block
19

o] 1[2] 8]

28[J29[Js0[]31]

R e SRS

Dept. of CS, York Univ.

File-Allocation Table

« The table has one entry for each disk block
« Indexed by block number

directory entry
[test [.- T 217
name start block

217 618
339 | end-of-file j
618 339

no. of disk blocks -1

FAT
-

Indexed Allocation(2)

Support efficient direct file access

No external fragmentation
Need cache index block for better performance

« Huge space waste:

— One file has a index block

— Most files on disk are only one or two blocks
How large the index block should be??

— Small - less waste

— small > how to support a large file

EXAMPLE:

A 512-byte block, each pointer is 4-byte,

one index block can contain at most 128 pointers (512/4=128)

Largest file to be supported by one index block is 512-byte * 128 = 64 KB

3/27/2007

Prepared By Prof. Hui Jiang (COSC3221) 3/27/2007

P P
Indexed Allocation: Linked Scheme Indexed Allocation: multilevel index
« Afirst-level index point to a set of second-level index blocks,
« For large file, we can allocate several index block s, which are which in turn point to the file data blocks.
also linked as a linked list
) I
« Ineach index block: 1 T
— Areserved pointer to next index block (nil for small files)
— Other pointers for file data blocks
L 1
O O
O O
O O
O O outer-index
1st 2nd
Index data Index data
block blocks block blocks index table file
Previous EXAMPLE: 2-level index can support a file up to 8 MB

S e g = S e = g =
e — e —
Summary: Allocation Methods Free-Space Management

« Contiguous allocation

— Quick access: only one disk read to reach data bloc ~ k * File-system maintains a free-space list

— Records all free disk blocks

— Prior size declaration
« Two data-structures for free-space list

— Serious external fragmentation

¢ Linked Allocation — Bit vector
— n disk reads to reach n-th data block — Linked list

— Not proper for random access — Grouping

— Counting

« Indexed allocation
— Two disk reads to reach data block
— Multi-level indexing requires more disk reads
— Large space waste due to index block
— Need cache index block (require large memory space)

Dept. of CS, York Univ. 6

Prepared By Prof. Hui Jiang (COSC3221) 3/27/2007

R R
Free-space management: Bit Vector Free-space management: linked list
« Bit vector (Bit map) (n blocks) : ||;|nk t.ogether'all free t:OCkS
01 2 n-1 « Keeping a pointer to the freo- list head —|
‘ ‘ ‘ ‘ ‘ ‘ | ‘ ‘ first free block (cached in et
memory)
B 1= block[i] free * No need of extra} storage.
b|t[|]={ . « Cannot get contiguous
0 = block]i] occupied space easily since
« Bit vector is stored word by word on disk traversing the list is not
efficient.

First free block number calculation:

(number of bits per word)*(number of 0-value words starting from
beginning) + offset of first 1 bit

H Bit map requires extra space. Example:
block size = 2 12 bytes
disk size = 10*2 30 bytes (10 gigabyte)

28[]29[]30[]31[]
n = 10*239/212 = 10*218 bits (or 320K bytes) \-/

Dept. of CS, York Univ. 7

