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Read 1st byte of /home/tom/work/test.txt

Read 1st block of file 296549625

Read:
drive 1, cylinder 73, track 2, sector 10

Out  0x113b, EF0C
Waiting for interrupt

File-System Interface
•• FileFile: logical storage unit defined by OS

– A file is a named collection of related information  recorded on 
secondary storage, e.g., disk.

– Files are mapped onto physical devices by the opera ting 
system.

• File attributes: 
– name, identifier, type, location, 
– size, protection, time, date and owner.

• File operations:
– Creating a file 
– Writing a file
– Reading a file
– Reposition within a file
– Deleting a file
– Truncating a file 
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File-System Interface (cont’)
• File types 

– executable, object, source, batch

– text, archive, library, multimedia

• File structure

• Directory: tree-structured, acyclic-graph, general graph

– search for a file

– list a directory

– Rename a file

– traverse the file system

• File sharing and protection

– Consistency semantics

– Access type: read,write,execute,append,delete,list

– Access control: owner,group,universe

File-System Implementation
• A logical view of disk space is a linear array of l ogical blocks.

• OS maintains lots of data structure to implement a file-system

– On-disk structures:

• How to boot OS saved in the disk

• Total number of blocks

• Number and locations of all free blocks

• Directory structure

• Individual file information: FCB(file control block )

– In-memory structures

• On-line file-system management

• CachingOn-disk Structure
• Boot Control Block  (boot block)

– Contains information to boot an operating system

• Partition Control Block (superblock)

– Detailed information of this partition

• Directory structure: to organize files.

• A FCB (File Control Block) for each file (inode):

In-memory Structure
• An in-memory partition table for all mounted partition

• An in-memory directory structure for directory information of 
recently accessed directories  (caching)

• The system-wide open-file table contains a copy of the FCB’s
of all open files as well as other information. 

• The per-process open-file table contains all open files for each 
process (pointers to the appropriate entry in the system-wide 
open-file table)
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File-System Implementation
• Directory implementation

• Allocation methods

• Free-space management

Directory Implementation
• A directory contains many files and possible sub-di rectories

• A directory structure need to store all index infor mation about all 
files in this directory.

• Directory operations:

– Search/Locate a file in a directory

– Create a new file in a directory

– Delete a file from the directory

• Directory implementation:

– Linear list

– Hash tableLinear List
• Use a linear list of file names with pointers to da ta blocks

• Data structures: linear array OR linked list

– Search/locate a file: linear search of the whole li st

– Create a new file: linear search + adding a new ent ry

– Remove a file: linear search + deleting the entry

• Disadvantage: low efficiency due to linear search

• Ordered list: complicating  file creation/deletion

File Name 1

File Name 2

File Name 3

Hash Table
Hush

Function
File 

Name

File A File B

File A

Hash table

0

1

2

N-1

N-2

An example of hash function:
(add all characters in file-name) % N 
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Allocation Methods
• Concerns:

– Use disk space effectively

– Access each file efficiently

• A logical view of disk space is a linear array of l ogic blocks

• Allocation methods:

– Contiguous allocation

– Linked allocation

– Indexed allocation

Contiguous Allocation(1)
• Contiguous-allocation method requires each file to occupy a set of 

contiguous blocks on the disk.

• The directory entry for each file indicates  the di sk address of the 
starting block and the length (in block units).

Contiguous Allocation (2)
• Advantages: 

– Disk access in accessing a file is minimal.

– Both sequential and direct accesses can be done eff iciently.

• Disadvantages:

– first-fit, best-fit (external fragmentation)

– Need to determine file size when creating it

• Modified contiguous-allocation scheme

– When the space is not enough, another chunk of cont iguous 
space, called an extent, is added to the initial al location.

– Location of a file includes:

starting address + block count + link to next exten t

Linked Allocation(1)
• Linked Allocation: each file is a linked list of di sk blocks

– Each directory entry has a pointer to the first blo ck of the file

– Each data block has a pointer to next block
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Linked Allocation (2)
• Advantage:

– No external fragmentation

– A file can grow without limit (unless disk is full)

• Disadvantages:

– In sequential access, a disk seek is needed for rea ding next 
block. (head movement can be long)

– In direct access, extremely inefficient.

– Wasting space for pointers, e.g. 4 out of 512-byte  (0.78%)

• Clustering

– Reliability: a middle block is lost or damaged � all following   
blocks can not be located

• Doubly linked list

• Save filename and relative block number in each blo ck

File-Allocation Table
• The table has one entry for each disk block

• Indexed by block number

Indexed Allocation(1)
• Indexed allocation: bringing all the pointers toget her into one 

location — an index blockindex block.

• Each file has its own index block, which is an arra y of disk-block   
addresses containing file data.

Indexed Allocation(2)
• Support efficient direct file access

• No external fragmentation

• Need cache index block for better performance

• Huge space waste:

– One file has a index block

– Most files on disk are only one or two blocks

• How large the index block should be??

– Small  � less waste

– small � how to support a large file

EXAMPLE:
A 512-byte block, each pointer is 4-byte, 

one index block can contain at most 128 pointers  (512/4=128)

Largest file to be supported by one index block is  512-byte * 128 = 64 KB
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Indexed Allocation: Linked Scheme
• For large file, we can allocate several index block s, which are 

also linked as a linked list

• In each index block:

– A reserved pointer to next index block ( nil for small files)

– Other pointers for file data blocks

1st
Index
block

data
blocks

2nd
Index
block

data
blocks

Indexed Allocation: multilevel index
• A first-level index point to a set of second-level index blocks, 

which in turn point to the file data blocks.M
outer-index

index table file

Previous EXAMPLE:  2-level index can support a file  up to 8 MBSummary: Allocation Methods
• Contiguous allocation

– Quick access: only one disk read to reach data bloc k

– Prior size declaration

– Serious external fragmentation

• Linked Allocation

– n disk reads to reach n-th data block

– Not proper for random access

• Indexed allocation

– Two disk reads to reach data block

– Multi-level indexing requires more disk reads

– Large space waste due to index block

– Need cache index block (require large memory space)

Free-Space Management
• File-system maintains a free-space list 

– Records all free disk blocks

• Two data-structures for free-space list

– Bit vector

– Linked list

– Grouping

– Counting
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Free-space management: Bit Vector
• Bit vector (Bit map)   ( n blocks)

• Bit vector is stored word by word on disk

First free block number calculation:

(number of bits per word)*(number of 0-value words starting from 
beginning) + offset of first 1 bit

…

0 1 2 n-1

bit[i] =
1 ⇒ block[i] free

0 ⇒ block[i] occupied� Bit map requires extra space.  Example:
block size = 2 12 bytes
disk size = 10*2 30 bytes (10 gigabyte)
n = 10*230/212 = 10*218 bits (or 320K bytes)

Free-space management: linked list
• Link together all free blocks

• Keeping a pointer to the 
first free block (cached in 
memory)

• No need of extra storage.

• Cannot get contiguous 
space easily since 
traversing the list is not 
efficient.


